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Abstract Measurements of the thennopower of a one-dimensional (ID) ballistic conslriction are 
presented and fitted by calculations for a constriction where the local potential at the bottleneck 
forms a saddle. The calculations show that the thermopower can be well approximated by 
a linear-response formulation far oubide its normal range of applicability, provided that an 
appropriate average temperature is assumed. The fits give a saddle parameter of my fwx 2 2, 
which sets an upper limit of 2.2 meV on the I D  sub-band spacing. 

1. Introduction 

A split-gate-defined, one-dimensional (ID) constriction [l] will exhibit quantized electrical 
conductance G ,  at multiples of 2e2/h, when the transport is ballistic [2,3]. In this regime, 
the Landauer-Biittiker formalism [4] may be used to calculate G ,  given the energy ( E ) -  
dependent transmission probability t ( E )  of electrons through the constriction. This problem 
has been treated theoretically by several workers by calculating t ( E )  either for sharp [5] or 
smoothly curved 161 constrictions, and assuming a hard-wall potential. Buttiker [7] pointed 
out that a more realistic model for the bottleneck of the constriction was a saddle-shaped 
potential, and that the appropriate t ( E )  was already known [SI. An extension of this model 
to the non-linear regime [9] has been used to explain the evolution of half plateaux in G as 
a function of applied voltage bias [lo]. 

An alternative way to study the transmission probability is via the thermopower S. 
Provided that f ( E )  varies sufficiently slowly on an energy scale comparable to keT ,  which 
is often the case for a split-gate defined constriction, the thermopower is proportional to 
the energy derivative of f ( E ) .  Since the electrical conductance is directly proportional to 
t ( E )  at zero temperature T ,  this makes the thermopower a more sensitive probe of the 
transmission probability. Sivan and Imry [Il l  and Butcher 1121 extended the Landauer- 
Biittiker formalism to account for thermal as well as electrical-potential gradients, and this 
approach was used by Streda [ 131 to calculate the thermopower of a ID conslxfction assuming 
a step-function ! ( E ) .  The thermopower of a saddle-shaped potential was first considered 
by Proetto [14]. Here we extend these calculations to the non-linear regime, allowing for 
large temperature gradients, and compare with our experimental results. 

5 Present address: Consejo Superior de Investigaciones Cientificas, Universidad Autonoma, E-28 049, Madrid. 
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The first measurement of ID ballistic thermopower was made by Molenkamp eta1 1151, 
and these results have been discussed [I61 with reference to a saddle-shaped potential. 
Although an attempt was made to obtain more detailed quantitative results [17], we have 
found no convincing fit with theory in the literature. In this paper we present thermopower 
measurements of a ID constriction as a function of applied temperature difference A T .  Such 
a device has recently been used by the authors to demonstrate an oscillatory thermopower 
in the Coulomb-blockade regime 1181. 

This paper is organized as follows. In section 2 the theoretical predictions for the 
electrical conductance and thermopower of a saddle-shaped constriction are presented. 
Firstly the linear response predictions are discussed and then the theory is extended to 
account for non-linear behaviour, since all of our experiniental results are in the non-linear 
regime. In section 3 the results are presented and in section 4 these are analysed in terms 
of the theory of section 2. By fitting the data with our calculations we have obtained values 
for the saddle-shape parameters, including an estimate of the ID sub-band spacing in the 
constriction. A brief summary is given section 5. 

2. Theory 

The electrical current 1 flowing f?om an electron reservoir with electrochemical potential 
p~ and temperature TI, to a second reservoir with values pz and Tz, via a constriction with 
a transmission probability t ( E ) ,  is given by [ l l ]  

f(pz; P I -  Tz. TI) = -- t ( E ) [ f ( E ;  P.I. T I )  - f ( E ;  pz, Tz)ldE ( I )  ;[ 
where f is the Fermi-Dirac function, given by 

f (E)  = (exp[(E - /*)/kBTl+ I)-’. (2) 

Defining A F  = (pz - PI) and AT = (2‘2 - T I ) ,  the conditions for linear response are 
Ap, keAT (< ksTav, where T, G (TI t E)/2  is the average temperature of the reservoirs. 
In this regime the zero-temperature electrical conductance G(p.  0), as a function of the 
mean electrochemical potential p, is [4] 

G(F,  0) = (zeZ/h)t(P) (3) 

while the thermopower is given by [ 111 

S@,, T )  E - A’ - - -- ’’ /+- dE (-g) t ( E )  (s) /lr dE (-g) t ( E ) .  
PAT e -- 

(4) 

We now consider the transmission probability t ( E )  for a ID constriction. Biittiker 
[7] suggested that the appropriate potential distribution V ( x .  y) in the plane of the two- 
dimensional electron gas @DE) below a split-gate should be saddle-shaped and given by 

~ ( x ,  y) = vO(pl, pz) - imw:xz + !p”yz .  (5 )  

Here V0(plI pz) is the electrostatic potential at the saddle point, and the curvatures of 
the potential are expressed in terms of the frequencies w, and w y .  The Hamiltonian is 
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then separable into the transverse wavefunctions (ID sub-bands) associated with energies 
hu,( i+ 1). i = 0, 1 , 2 , .  . ., and a wavefunction for motion along x ,  in an effective potential 
VO + fiu,(i + i) - $mw,2x2. The transmission probabilities Cj from incident channel i to 
out-going channel j are then [7] 

zj  = Sij/[l + exp(-rrsi)] (6~) 

where 

si = 2[E - hw,(i + i) - V O ~ I ,  ~z)l/fiwx (6b) 

is dimensionless, and represents the excess energy in the ith ID channel at the saddle 
point. When ti c 0, transport in this channel is by tunnelling. Because the Hamiltonian 
resulting from the potential of (5 )  is separable, there is no channel mixing [7], and the total 
transmission probability is given simply by t ( E )  = xi F j ( E ) .  

For a given value of the saddle parameter uy/ux, (3)-(6) can be used to generate 
both G and S as a function of the reduced electrochemical potential (pl - VO)/hu,. In 
figure l(a) the zero-temperature electrical conductance G(p,  0) is plotted for oy/ux = 3, 
while in figure I(b) the full curve represents the corresponding linear-response thermopower 
at a temperature of ksT = O.lhu,. The thennopower exhibits a peak wheh the electrical 
conductance is in a transition region between quantized plateaux, as originally predicted for 
a step-function t ( E )  by Streda [13]. 

In the non-linear regime (4) does not apply, but given pl, Tl and Tz, together with 
t ( E )  from (6), we can solve (1) numerically for I(p2; pl ,  c, Tz) = 0 to obtain pz, and 
hence, S A p / e A T .  In these calculations we make the approximation Vo(p1, pz) = 
VO + p(pz - PI), where p is an adjustable parameter, as previously used [9] to explain 
high-Dc-bias results [lo]. The most significant result of the calculations is that, in the case 
of a saddle-shaped potential, (4) is a good approximation to the thennopower well beyond 
the linear-response regime, provided that we set T = T,. Given that S is linear in T for 
kBT << Ru, [14], it is to be expected that the non-linear thennopower will lie somewhere 
between S(Tl) and S(Tz);  however it is surprising that (4) is such a good approximation 
over a wide range of parameters, as we shall now see. 

!A figure l(b) we plot the linear-response thermopower of (4), with t ( E )  given by 
(6),  kBT = O.Ihu,  and w y / u .  = 3. Also plotted is the thermopower calculated from 
(1) for kBT,, = O.lhu, and uy/uz = 3, but with large temperature differences of 
AT = 0.67T,(c = 2T2) and AT = 1.67Ta,(K = IlTz). For TI = 2Tz, the linear- 
response approximation is always within 10% of the exact result, and even at TI = 11 TZ 
the discrepancy only reaches 35% at the final minimum. Here we have set B = i, as used 
elsewhere [9, I O ] ;  however, further calculations show that choosing a different value for ,9 
only has the effect of shifting the curves slightly on the energy axis. 

The accuracy of the linear-response approximation to the true thermopower is also 
largely unaffected by the choice of the saddle-shape parameter w y / u x .  We have compared 
the results for values as large as oy/ox = 6 and find similar agreement to that demonstrated 
in figure 10) .  In figure l(c) we plot S calculated from (1) with w y / u r  = 1.5, and one 
reservoir held at a constant temperature of kBT2 = 0.02hoy while TI is varied, in analogy 
with the experimental situation to be described in section 3. Again, we plot the linear- 
response results at the corresponding T,, for comparison, finding a significant discrepancy 
only when kBc becomes comparable to the ID sub-band energy spacing hw,. Increasing 
the temperature has two effects on S: (i) the peaks become less distinct; and (ii) the absolute 
value increases, since S is approximately linearly dependent on T .  
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Figure 1. (a) G as a function of electrochemical potential @I for T = 0, calculated using (3) and 
(6) with oy/wl = 3. (b) S calculated using the linw-response expression (full curve) of (4). 
m d  from (1) for the non-linear cases of TI = 2fi (dolled curve) and T, = 1 IT2 (broken curve). 
In all three cases o r / w I  = 3, and the avenge temperamre is constant at ksT,, = O.iho,. (c) 
S calculated for or/ox = 1.5 using (I), with knTz = 0.02fi0,. and with k n q J h w y  = 0.10 
(chain curve), 0.25 (dotted curve), 0.51 (double-chain curve) and 1.05 (broken curve). The 
full curves are the linear-response estirnales of (4) at the correspanding average temperaiures 
ksTav/frwy = 0.06, 0.13, 0.27 and 0.53. 
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3. Experimental results 

The experiments were performed on a device consisting of two pairs of gold Schottky split 
gates (GI and G2 in figure 2(b)), which were used to electrostatically define conducting 
regions in the 2DEG of a GaAs-Alo.3Gao,-iAs heterojunction. The carrier density and mobility 
of the ZDEG were measured at 4.2 K using a large Hall-bar device of the same material. 
The values obtained were 3.9 x l O I 5  m-’ and 200 m2 V-I s-’ respectively, implying a 
Fermi energy EF = 13 meV, and a mean free path 1 = 21 pm. Electron-beam lithography 
was used to fabricate the split gates, each of which had a length of 0.3 p m  and a width of 
0.5 pm. 

Thermoelectric measurements were made by passing a DC current IOC along the central 
channel, of width 5 pm, in order to increase the electron temperature Te in this region 
above the lattice temperature TL (see inset in figure 2(b)). The large regions of ZDEG 
outside the channel were assumed to act as electron reservoirs at TL. which was maintained 
at TL = 550 mK by placing the sample above the liquid in a pumped He3 system. The 
temperature difference AT = (c - TL) between the central channel and the left-hand 
reservoir produces an electrochemical potential difference across the ID constriction defined 
by gate G1, proportional to its thermopower SI. The measured thermoelectric DC voltage 
AKi, = (VI - V.) is then given by AV& = (SI - & ) A T .  A small, constant offset of $AT,  
due to the thermopower (S,) of G2, is always present, as discussed in [15]. Electrical 
conductances were measured using standard low-frequency AC techniques. 

The thermoelectric and electrical conductance results obtained from split gate G1 are 
displayed in figure 2. In figure 2(b) we plot AV& for various values of heating current roc, 
and observe peaks when G is between quantized plateaux, as first observed by Molenkamp 
et al [ 151. To obtain an estimate of the AT produced by the various I,, the quality of the 
plateaux in G was used as a calibration for temperature. Over the range 2 K c TL c 15 K, 
the plateaux in G broadened and eventually disappeared. Similar behaviour was observed 
when TL was held constant at 2 K, and IDC was increased. Assuming that G ,  like S, is 
only dependent on the average temperature of the reservoirs, we compared the width of 
the plateaux from the two dependences to obtain Tav as a function of IDc. We found an 
approximately linear relation between T, and ~ I D c ~ .  as shown in the inset of figure 3. Using 
the relation T, = TL + AT/2,  the magnitudes of the peaks in -AV,  from figure 2(b) could 
then be plotted as a function of AT (see figure 3). Since the AT for these data far exceeds 
TL, the measurement is well beyond linear response, as confirmed by the non-linear form 
of the data in figure 3. Fortunately it is still valid to calculate S using (4), provided that 
we set T = Tay as discussed in section 2. This explicit expression could then be used to fit 
to the non-linear thermovoltage data of figure 2(b). 

4. Data analysis 

To gain an initial estimate of the quantization parameter w y / w x ,  G(p )  was calculated using 
(3) and compared with the data obtained at IDC = 0. Since the plateaux in G were 
found to be equally spaced in gate voltage Vgl,  it was possible to convert V,l into a 
dimensionless energy by identifying the centres of the plateaux as corresponding to integer 
values of (p - Vb)/hw,. In figure 2(a) the data are plotted together with G(p) calculated 
for w y / o x  = 1.0 and 3. We have assumed here that ~ B T L  << hw,, as justified by the 
thermopower results below, so that the T = 0 estimate of G can be used. The data exhibit 
clear deviations from theory; however, we obtain a best fit of wy/wx = 1.7, and a possible 
range of 1.0 < wy/w,  < 3. 
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Figure 2. (a) Experimental electrical conductance C (full curve) of split-gate GI as a function 
of gate voltage V,I (top scale). and inferred chemical potential (p - Vo) /hoy  at the saddle point 
(bottom scale), for !E = 0, TL = 550 mK and with a gate voltage on G2 of V,Z = -2.25 V. 
Also ploned is Cb), calculated using (3) and (6). with oy/ox = 1.0 (dotted curve) and 3.0 
(broken curve). (b) Measured thermoelectric voltage AV* os a function of V,, for (from the 
bottom): /E = 0.0.5. 1.0, , , ., 5.0 pA. Inset: Schematic of the device (not to sale), showing 
the WO split-gates (black) used to define the heating channel. 
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AT (K) 

Figure 3. Peak values of -AV& from figure W), ploned as a function of A T ,  for the peaks 
corresponding to @ - V o f / h q  = 1.5 (A) and 2.5 (V), Inset: The effective average temperature 
7, at the split-gate constriction as a result of passing a current IDC along the heating channel. 
The T,, values aere obtained by measuring the rise in lattice temperature required to produce 
an amount of broadening in the elecWical conductance plateaux comparable to that produced by 
the current 1 ~ .  

Because of the convenient form of (4). and its close approximation to the exact result of 
(l), we have used it to fit to the thermoelectric data of figure 2(b), with the three adjustable 
parameters oy/oz, Tav and A T .  In figure 4 we plot the measured values of AVh = &AT 
at lDc = 3.0 FA, together with the linear-response estimate S(p, kBT,) calculated for 
oy/ox = 1.5 at a variety of temperatures, and scaled to coincide with the i = 1 peak. 
Clearly, kBTav/hwy = 0.11 is the best fit to the data. The i = 1 peak corresponds to the 
transition from one- to two-channel transport, and we have chosen to fit to this peak only. 
For i > 1, the magnitude and sharpness of the peaks were always lower than predicted 
by theory (see figure 4). This may be due to a distortion of the parabolic potential by the 
higher charge densities present, or to the increase of inter-sub-band scattering as more ID 
sub-bands become accessible. 

Once T, has been determined from the shape of the peak, AT may be obtained from 
the magnitude, via the relation AV* = SAT. The best-fit values of AT are plotted as 
a function of l ~ c  in figure 5(a) for various values of oy/ox. For w Y / q  2 we find 
that AT tends to zero with /DC as expected, whereas the estimate wy/wr = 1.5 leads to 
unrealistically high values of AT near IDC = 0. We therefore conclude that oy/ox = 2 
is a lower limit for the quantization parameter. The broken line in figure 5(a) represents 
the dependence A T / l / m l  Y 1.7 K FA-’, obtained from the dependence of the electrical 
conductance plateaux upon temperature, and corresponds to the data in the inset of figure 3. 
The values of AT obtained from the two types of measurement show good agreement, 
although we note that the inherent difficulties in comparing the plateaux widths limit the 
accuracy of that technique to only about k20%. 

In figure 5@)  we plot the best-fit values of kBTav/hwy against A T ,  for various values of 
ZDC and wy/wx,  and find an approximately linear dependence satisfying T, = T, + 0rAT. 
The gradient and intercept of the data in figure 5(b) provide values for 0r and kTL/hwy, 
respectively. The data based on the estimate oy /wx  = 1.5 has a neg.ative intercept, 
indicating that TL c 0, and so this estimate is too low. With wy/wx = 2, we obtain Amy = 
(2.2 f 1.0) meV and cy = 0.4 f 0.3, whereas wy/w,  > 3 gives hwY = (0.78 iz 0.17) meV 
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Figure 4. Measured AV* as a function of (@ - Vo)/hoy for loc = 3.0 @A (full curve). and 
S calculated using (4). with oy fox = 1.5 and keTavfioy = 0.07 (broken curve), 0.1 I (dotted 
curve). and 0.15 (chain curve). The calculated curves have been scaled lo coincide with the 
i = 1 Deak of  lhe data 

and 01 = 0.15 zk0.06. In all cases we have used the known value of TL = 0.55 K. Note that 
there is little variation in the results for values of wy/wx > 3, since when kBT,,/hw, 0.1 
the width of the thermopower peak is dominated by the energy spread of (df/dE) in (4), 
and is relatively insensitive to the exact details of the saddle potential. 

Our calculations showed that if we set T = T,, the linear-response result is a good 
approximation to S. implying 01 = 4. The estimate q / w X  = 2 gives an 01 consistent 
with this, whereas the value obtained with w y / o x  = 3 is too small, indicating that the 
quantization parameter is closer to wy/wx = 2. The corresponding ID sub-band separation 
of fiw, = (2.2 i 1.0) meV is consistent with values obtained by Patel et a1 [lo] from 
non-linear electrical conductance measurements. 

5. Conclusions 

In summary, DC current heating has been used to produce large temperature differences 
across a ID ballistic constriction, and the resulting thermoelechic voltages have been 
measured. The thermopower of a constriction where the local potential at the bottleneck 
forms a saddle was calculated in the non-linear regime, for AT T ,  and it was shown that 
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AT (W 
Figure 5. (a) AT as a function of roc, calculated by fitting (4) to the data of figure Xb). with 
w y / o ,  = 1.5 (0). 2 (+), 3 (W, 4 (0). 5 (A) and 30 (x). The broken line was obtained from 
the dependence of G upon TL, as explained in the text. (b) Best-fit values of ksTfiol,, plotted 
against AT for the snme dam Md the besf-fit iinev dependences for oy/ol = 2 (broken line) 
and oy/ol > 3 (dotted line). 

a linear-response formulation was a good approximation to this result, provided that T was 
set to the average temperature of the reservoirs. By fitting the linear-response approximation 
to our data we were able to obtain values for the saddle-shape parameters, including a ID 
sub-band energy separation of (2.2 zk 1.0) meV. 
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